Ionica Smeets

Hoogleraar wetenschapscommunicatie – Universiteit Leiden

Een pizza met zo min mogelijk korst, wat is daarvoor de beste vorm?


Beste Ionica,
‘Wij serveren pizza in ovale vorm waardoor je optimaal kunt genieten van elke hap, zonder alleen maar korst te eten’, zo las ik op een menukaart. Dit suggereert dat een ovale pizza meer ‘binnenkant’ heeft en minder korst dan een ronde pizza. Volgens mij klopt het niet, maar ik kan het niet duiden. Als eenvoudige geschiedenisleraar kan ik de wiskundige uitleg op het internet niet volgen. Kun je me helpen?
Jan Sluimer

Beste Jan Sluimer,

U heeft gelijk! Een ovale pizza heeft meer korst dan een ronde met dezelfde oppervlakte. Sterker nog: elke vorm pizza die geen cirkel is, heeft in verhouding méér korst dan een ronde pizza.

Laten we om het rekenwerk makkelijk te houden eens een ronde en een vierkante pizza vergelijken. Neem een ronde pizza met een diameter van 30 centimeter. De straal is dan 15 centimeter. De oppervlakte van deze pizza is pi maal de straal in het kwadraat, komt op ongeveer 3,14 maal 225, afgerond 707 vierkante centimeter. De omtrek van deze pizza is pi maal de diameter, ongeveer 94,3 centimeter. Dat is de lengte van de korst.

Een vierkante pizza met dezelfde oppervlakte heeft zijden van (opnieuw afgerond) 26,6 centimeter. Maar de korst van deze pizza is afgerond 106 centimeter lang (vier keer de lengte van de zijde). Dat is ruim 12 procent meer dan bij de ronde pizza! Persoonlijk houd ik overigens zeer van korst, dus ik zou dit eerder als een voordeel dan een nadeel zien.

Bij een ovale vorm kun je soortgelijke berekeningen doen en je zult zien dat een even grote cirkelvormige pizza altijd minder korst heeft. Sterker nog: van alle mogelijke tweedimensionale figuren met dezelfde oppervlakte (en dan ook echt alle) heeft een cirkel de kleinst mogelijke omtrek.

Ik leerde dit als feitje op de middelbare school en door uw brief vroeg ik me af of ik het bewijs ooit had gezien. Oliver Philips laat in zijn artikel Showing The Surprising Difficulty of Proving That a Circle has the Smallest Perimeter for a Given Area, and Other Interesting Related Problems zien dat het bewijs verrassend moeilijk is.

Er zijn heel wat kantjes vol wiskundige notatie nodig, met exotische verschijnselen als de isoperimetrische ongelijkheid. Mocht u dit bewijs ergens zijn tegengekomen, dan snap ik dat u de uitleg niet kon volgen. Ik zeg vaak tegen studenten dat je alles in principe aan iedereen kunt uitleggen, maar niet in elke vorm. In een column kan ik dit bewijs niet uitleggen. Misschien zou het lukken als we samen een dag voor een schoolbord doorbrachten, al is ook dat ambitieus, omdat ik er zelf nog heel wat tijd in zou moeten steken om het bewijs volledig te doorgronden.

Het grote voordeel van wiskundige wetten is dat u ze eindeloos kunt testen en dat ze altijd werken – ook voor wie ze niet begrijpt. U kunt pizza’s in allerlei vormen snijden en nameten dat bij een constante oppervlakte een ronde pizza altijd het minste korst heeft. Misschien is dat een leuke activiteit voor komende donderdag 14 maart, in Amerikaanse notatie 3/14 en daarom ook wel pi-dag en sinds 2020 de jaarlijkse Internationale dag van de wiskunde.

Deze column verscheen op 8 maart 2024 in de Volkskrant.

Nieuwe adviesvragen zijn van harte welkom. Liefst persoonlijke vragen die op het eerste gezicht he-le-maal niets met wiskunde te maken hebben. U kunt ze insturen via ionica@volkskrant.nl.

Lees hier ook de andere columns van de reeks.