Lieve Ionica,
Ik fietste laatst met onze dochter van bijna 6 over de campus waar ik twintig jaar geleden studeerde. Ik probeerde uit te leggen wat een universiteit is, en dat je daar na de basisschool en de middelbare school nóg meer leren kunt. Lijkt je dat leuk? ‘Nee, dan ben ik denk ik al zo oud, dan neem ik een kat en dan ga ik daarvoor zorgen.’ Hoe zorg ik dat deze eigenzinnigheid nooit verdwijnt? – Jan Haas
Beste Jan,
Wat denk ik met veel plezier terug aan mijn jaren op de betonnen campus van de TU Delft. De knappe jongens bij wie ik achter op de fiets zat. De cursus kleinkunst in het cultureel centrum. En niet te vergeten hoe ik als wiskundestudent verliefd werd op de schoonheid van een bewijs uit het ongerijmde.
Bij zo’n bewijs neem je het tegenovergestelde aan van wat je wilt bewijzen. Vervolgens leid je via de ijzeren wetten van de logica beweringen af die uit deze aanname volgen, net zo lang tot je een tegenspraak krijgt: een bewering die niet waar is. Vervolgens moet je concluderen dat de aanname waarmee je begon niet waar kan zijn en is je bewijs klaar.
Tijdens mijn studie oefende ik dit principe met onderwerpen die vooral leuk zijn voor wiskundigen (de wortel uit 2 is geen breuk, er bestaan oneindig veel priemgetallen), maar laat ik nu een voorbeeld geven dat past in de leefwereld van uw dochter. In een kring met dertien meisjes en dertien jongens zal er altijd een kind zijn dat tussen twee meisjes inzit.
Om deze bewering te bewijzen vanuit het ongerijmde, nemen we aan dat er wél zo’n kring mogelijk is waarbij geen enkel kind tussen twee meisjes zit. Vervolgens definiëren we een meisjesblok als een groepje meisjes dat naast elkaar in de kring zit – aan weerszijden ingeklemd tussen jongens. Er kan geen blok van drie meisjes bestaan, want dat zou het middelste meisje tussen twee andere meisjes zitten en we hebben aangenomen dat dit níét zo was. Met maximaal twee meisjes per meisjesblok en dertien meisjes in de kring moeten er minstens zeven meisjesblokken zijn.
Tussen elke twee meisjesblokken moeten minstens twee jongens zitten. Als het maar één jongen was, dan zou hij tussen twee meisjes zitten en dat gaat weer in tegen onze aanname. Er zijn minstens zeven gaten tussen de minstens zeven meisjesblokken en in elk gat moeten steeds minstens twee jongens zitten. Er moeten daarmee minstens veertien jongens in de kring zitten, terwijl het er maar dertien waren. Dit is onze tegenspraak, we moeten onze eerste aanname verwerpen. Er bestaat geen kring van dertien jongens en dertien meisjes waarbij er geen enkel kind tussen twee meisjes zit.
Terug naar uw vraag. Ouders doen allerlei aannamen over wat er goed is voor hun kind. Bij tegenspraak is het verleidelijk om meer uit te leggen en om te proberen uw kind de richting op te duwen die u het beste leek. Maar als u de eigenzinnigheid van uw dochter wilt koesteren, dan adviseer ik u om flexibel te zijn als een wiskundige. Durf uw eigen aannamen te verwerpen als u een tegenspraak tegenkomt.
Deze column verscheen op 10 november 2023 in de Volkskrant.
Nieuwe adviesvragen zijn van harte welkom. Liefst persoonlijke vragen die op het eerste gezicht he-le-maal niets met wiskunde te maken hebben. U kunt ze insturen via ionica@volkskrant.nl.
Lees hier ook de andere columns van de reeks.